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Decay of three-dimensional turbulence
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A modification of the Loitsyanskii integral is proposed as an invariant of three-
dimensional decaying homogeneous and isotropic turbulence. As a result, the kinetic
energy of a flow, generated in an infinitely large volume by the initial energy spectrum
E(k, t = 0), which peaks in the vicinity of the wavenumber k0 = 1/L(0) = O(1), L
being an integral scale, decays with time in accordance with Kolmogorov’s (1941)
prediction: K = 1

2
u2 ∝ t−γ with γ = 10/7.

1. Background
The problem of the decay of three-dimensional turbulence, in which we are

interested in this paper, can be formulated as follows. Consider the time evolution
of an initial velocity field u(x, 0) = u0 defined on an infinite space. The field u0 is a
Gaussian random noise with the non-zero Fourier components ui(k) in the interval
k � ki ≈ 1/L0 = O(1), where k is the wavenumber and L is an integral scale of turbu-

lence, and it is assumed to have finite kinetic energy K(0) = 1
2
u2

0 = O(1). In other
words, we consider an initial spectrum E(k, 0) rapidly approaching zero in the limit
k → 0 or E(k → 0, 0) � kn for any power n. In the absence of additional generation
of turbulence, this field will decay with time. The decay process necessarily involves
nonlinear interactions among wavenumbers. In this work we are interested in the
decay process at intermediate times τ0 � t � τν defined through τ0 ≈ L0/u0 and
τν ≈ L2/ν → ∞ when the viscosity ν → 0.

The energy balance for this flow, derived from the Navier–Stokes equations, is

∂tK = −ε = −ν

(
∂ui

∂xj

)2

< 0. (1)

The law of decay of kinetic energy K = 1
2
u2 with time was first considered in a

classic paper by Kolmogorov (1941). Kolmogorov’s result K(t) ∝ t−γ with γ = 10/7
has been challenged by Proudman & Reid (1954), Batchelor & Proudman (1956)
and others (for details, see Monin & Yaglom 1975; Hinze 1975; Frisch 1995). While
early experiments (see e.g. Batchelor 1953) yielded a power-law exponent of unity,
the later, and more careful, experiments of Comte-Bellot & Corrsin (1966) yielded
γ ≈ 1.25–1.3; Bennet & Corrsin (1978) reported a γ ≈ 1.1. An excellent and critical
review of experimental data can be found in Skrbek & Stalp (2000). The results of
numerical simulations (Lee & Reynolds 1995) also scatter quite substantially in the
range γ ≈ 1.2–1.67. The renormalization group calculation (Yakhot & Orszag 1986)
based on an ε-expansion procedure gave γ ≈ 1.47, reasonably close to Kolmogorov’s
value γ = 10/7.

The decay of three-dimensional turbulence is one of the fundamental problems of
turbulence theory. It is also one of the main benchmark cases used for calibration
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of various parameters entering semi-empirical models widely used in engineering
(Launder & Spalding 1972). Thus, the magnitude of the exponent γ is quite important
also for applications. The uncertainty in the measured or simulated value of γ can be
explained by finite size effects and initial conditions: if the integral scale of turbulence
L is approximately equal to the size of the system L =const, then we can approximate
(1) as ∂tK ≈ −K3/2/L with the result: K ∝ t−2. Indeed, in water experiments of a
pull-through grid by van Doorn, White & Sreenivasan (1999), the exponent that was
measured to be initially about 1.1 was found to cross over to a larger value for long
times; similar results were found in the helium experiments of Smith et al. (1993).
This basic result was also observed in various numerical simulations of Borue &
Orszag (1995) and Biferale et al. (2003). Thus, the non-trivial time-dependence of
K(t) is strongly tied to the simultaneous non-trivial time-dependence of the integral
scale L(t) � L. Since L � L grows with time, to achieve the asymptotic universal
regime of turbulence decay, one needs really large-scale simulations. Our goal is to
understand the asymptotic universal regime.

2. Kolmogorov’s decay law and the limitations of the Loitsyanskii integral
Since Kolmogorov’s derivation will be at the core of the theory to be developed

below, let us first recall its main steps. Consider two points x and x + r i in a flow,
where i is the unit vector parallel to the x-axis, and define a correlation function
brr = u(x)u(x + r) where u is the x-component of the velocity field. In the limit ν → 0,
the exact equation for brr is (Monin & Yaglom 1975; Landau & Lifshitz 1982)

∂brr

∂t
=

1

6r4

∂

∂r
r4S3,0(r), (2)

with S3,0 = (u(x + r) − u(x))3. Multiplying this equation by r4 and integrating over r

from r = 0 to r = ∞, we obtain

∂

∂t

∫ ∞

0

r4brr dr = 1
6
r4S3,0(r)|∞0 . (3)

If we assume (following Loitsyanski 1939) that as r → ∞, the product r4S3,0(r) → 0,
we have the result that I =

∫ ∞
0

r4brr dr =const. The integral is estimated readily
(Kolmogorov 1941): since as r → ∞ the correlation function brr rapidly tends to zero,
the integral is approximately equal to KL5 where L is the integral scale beyond
which the correlation function rapidly disappears. Since L ≈ urmst , we readily obtain
K ∝ t−10/7 and L ∝ t2/7. This is Kolmogorov’s law of turbulence decay. Later, Landau
& Lifshitz (1982) showed that the Loitsyanskii invariant I = const can be obtained
directly from conservation of angular momentum of the entire flow.

This beautiful derivation was analysed by Proudman & Reid (1956) and Batchelor
& Proudman (1956), and was shown to be incorrect (for a review, see Monin &
Yaglom 1975; Hinze 1975; Frisch 1995). To demonstrate its breakdown, we recall
that

I =

∫ ∞

0

r4brr dr = 2

∫ ∞

0

r4 dr

∫ ∞

0

E(k) cos(kr) dk =
∂4E(k = 0)

∂k4
. (4)

Thus, the statement I = const is equivalent to the statement that ∂t∂
4E(k = 0, t)/

∂k4 = 0. That this is not so can be illustrated as follows. We can utilize the scale
separation (kL(t) → 0; ω → 0), ω being the frequency, and using the multiscale or
renormalization group methods (Forster, Nelson & Stephen 1977; Yakhot & Orszag
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1986; Frisch 1995) derive a linear equation for time evolution of the energy spectrum
as

∂E(k → 0)

∂t
= ak4L4u3

rms − bk2urmsLE(k → 0), (5)

subject to the initial condition E0 = E(k, 0). In the limit k → 0, the nonlinear advective
contribution to (5) disappears due to Galilean invariance (Forster et al. 1977). The
equation (5) is the outcome of a multiscale expansion in powers of dimensionless
parameter kL, so that a =

∑∞
n=0 An(kL)2n and b =

∑∞
n=0 Bn(kL)2n. As we are

interested in the limit kL → 0, we may neglect all high-order contributions and
treat the coefficients a and b as constant geometric coefficients. It will become clear
that the most (and only) important property of (5) for the theory presented below
is that if the small-scale velocity field u is statistically isotropic and homogeneous,
the parameters a > 0 and b > 0. Equation (5) governs the time evolution of the small-
wavenumber asymptotics (k → 0) of the energy spectrum E(k) with the first term in the
right-hand side describing the eddy noise (back scattering), transferring some of the
energy toward large scales. The second contribution, leading to energy dissipation, is
responsible for the so-called eddy viscosity effects. Combining (4) and (5), we conclude
that the Loitsyanskii integral is not an invariant after all! As already pointed out, this
conclusion was first reached by Proudman & Reid (1954) and Batchelor & Proudman
(1956). (For the most recent review of the subject, see also Skrbek & Stalp 2000.)

The solution to equation (5) demonstrates the well-known effect of back scattering:
while the total energy in the system decays, the initially depleted long-wave part of
the energy spectrum

E(k → 0, t) ≈ ak4 exp

(
−bk2

∫
Lurms

)∫ t

0

L4u3
rms exp

(
bk2

∫
Lurms

)
+ E(k → 0, 0)

steadily grows with time, so that ∂t∂
4E(k = 0)/∂k4 ≈ L4u3

3ms > 0. As we will see later,
as time t → ∞, this rate of growth tends to zero as a negative power of t . Here we are
interested in the case of the initial spectrum E(0, 0) = 0 and it follows from the above
solution that E(k → 0, t) ∝ k4. Thus ∂tI (t) > 0, so that by repeating Kolmogorov’s
argument, we obtain K(t) ∝ tγ with γ � −10/7. To obtain a more solid result, we
have to modify the theory.

3. The new lengthscale and the principal result
Introducing dimensionless variables T = tuo/L0, U = u/u0, K = kL0, l = L/L0

and e(k) = E(k)/L0u
2
0, equation (5) becomes

∂e(K → 0)

∂T
= aK4l4U 3 − bK2Ule(K → 0).

We see that in the dimensionless variables, the initial parameters L0, u0 disappear
from the equations of motion of the large-scale velocity fluctuations, and thus cannot
enter the finial result. This means that in an infinite flow with viscosity ν → 0 the long-
time asymptotics T � 1 can involve only the dynamically determined large lengthscale
L(t) ≈ urms(t)t which is similar to the one used by Kolmogorov (1941).

Let us multiply equation (2) by r4 and integrate over r in the interval 0 � r � LY (t)
to obtain∫ LY (t)

0

∂

∂t
r4brr(r) dr =

∂

∂t

∫ LY (t)

0

r4brr(r) dr − ∂LY

∂t
L4

Y brr(LY ) = 1
6
L4

Y S3,0(LY ).



90 V. Yakhot

Defining the time-dependent ‘integral’ scale as

LY (t) = −
∫ t

0

dτ
S3,0(LY (τ ))

6brr(LY (τ ))
, (6)

we see that the integral

IY =

∫ LY (t)

0

r4brr dr = const, (7)

is an invariant of decaying turbulence. In the inertial range, where S3(LY ) ∝ −LY < 0,
equation (6) does not have solutions. Thus, the scale LY (t), defined by (6), can
pertain only to the upper end of the inertial range where S3,0(r) tends toward zero.
The existence of this scale has been demonstrated in the measurements of Kurien &
Sreenivasan (2001) and the simulations of Gotoh & Nakano (2003). The relation (6)
leads to the important estimate that LY ≈ urmst .

To evaluate the integral in (7), let us define E<(k) and E>(k) corresponding
to k � 1/LY and k � 1/LY , respectively, and, introduce the integral wavenumber
kY = 1/LY . Let us further demand the continuity of the energy spectrum at the
integral scale E<(kY ) =E>(kY ). Since we have shown that E<(k) involves the initial
lengthscale only in the combination K = kL0, we conclude that at the top of
the universal (‘inertial’) range e> = e>(L0/LY (t)). Since on the scales r > LY the
correlation function rapidly decreases, the integral (7) is proportional to LY (t)5u2

rms .
At the same time, it follows from (4) and (5) that the same integral has the form

IY =

∫ LY

0

r4brr dr = 2

∫ LY

0

r4 dr

∫ ∞

0

E(k) cos(kr) dk

=

∫ ∞

0

∂4E(k)

∂k4

(
sin(kLY )

k
− LY

)
dk = I1 + I2. (8)

Due to the strongly oscillating factor kLY � 1, the main contribution to the first
integral I1 on the right-hand side of (8) comes from the interval 0 <k < 1/LY . Using
equation (5) for the energy spectrum in this interval, gives I1 = O(u3

rmsL4
Y t).

Since in the limit k → 0, the energy spectrum E(k) ∝ k4, the second integral I2 =
−LY (∂3E(k)/∂k3)|∞0 = 0. On the other hand, the above estimate gave IY ≈ u2

rmsL5
Y > 0.

Thus, we have u3
rmsL4

Y t ≈ u2
rmsL5

Y leading to the relation LY ≈ urmst , similar
to the one obtained above. Using this, we can repeat Kolmogorov’s argument
(IY ≈ L5

Y u2
rms = const; LY ≈ urmst) and obtain the law of turbulence decay: that, for

long times, T � 1 (t � t0), the kinetic energy K(t)/K(0) ∝ (t/t0)
−10/7 where t0 ≈ L0/u0.

4. Conclusions
In the past, Kolmogorov’s decay law has been regarded as inapplicable to the decay

problem because its original derivation was based on the existence of the Loitsyanskii
integral. The main result of this work is the following. We have discovered a new
integral lengthscale LY (t) defined by (6) and related to it the integral (7), which is
an invariant (integral of motion) of decaying high-Reynolds-number turbulence. The
lengthscale is characterized by the condition that the third-order structure function
S3,0(L(t)) rapidly reaches zero around it. As a result, in an infinitely large system the
Kolmogorov decay law, K(t) ∝ t−γ with γ = 10/7, is recovered. Its validity does not
depend on the limitations of the Loitsyanskii integral.

The method developed above fails when applied to the problem of decaying turbu-
lence governed by the one-dimensional Burgers equation, generated by the random
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initial conditions with E(k =0, 0) = 0, we are interested in here. In this case, the
integral I =

∫ ∞
−∞ brr dr =E(k = 0, t) = 0. As a result the estimate I ≈ u2L = const �= 0

is incorrect. The integral scale in this case is given by the L ≈ urmst , as in the case
of the Navier–Stokes turbulence, considered above, but an additional equation for
L(t) is needed. This problem was analysed in detail for the class of initial conditions
E(k, 0) = knφ(k) by Gurbatov et al. (1997).

I am grateful to G. Falkovich, M. Vergassola, U. Frisch, A. Bershadskii, K. R.
Sreenivasan and L. Skrbek for many important comments and suggestions.
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